Leveraging Image-based Generative Adversarial Networks for Time Series Generation

12/15/2021
by   Justin Hellermann, et al.
0

Generative models synthesize image data with great success regarding sampling quality, diversity and feature disentanglement. Generative models for time series lack these benefits due to a missing representation, which captures temporal dynamics and allows inversion for sampling. The paper proposes the intertemporal return plot (IRP) representation to facilitate the use of image-based generative adversarial networks for time series generation. The representation proves effective in capturing time series characteristics and, compared to alternative representations, benefits from invertibility and scale-invariance. Empirical benchmarks confirm these features and demonstrate that the IRP enables an off-the-shelf Wasserstein GAN with gradient penalty to sample realistic time series, which outperform a specialized RNN-based GAN, while simultaneously reducing model complexity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset