Lifting recursive counterexamples to higher-order arithmetic
In classical computability theory, a recursive counterexample to a theorem shows that the latter does not hold when restricted to computable objects. These counterexamples are highly useful in the Reverse Mathematics program, where the aim of the latter is to determine the minimal axioms needed to prove a given theorem of ordinary mathematics. Indeed, recursive counterexamples often (help) establish the 'reverse' implication in the typical equivalence between said minimal axioms and the theorem at hand. The aforementioned is generally formulated in the language of second-order arithmetic. In this paper, we show that recursive counterexamples are readily modified to provide similar implications in higher-order arithmetic. For instance, the higher-order analogue of 'sequence' is the topological notion of 'net', also known as 'Moore-Smith sequence'. Finally, our results on metric spaces suggest that the latter can only be reasonably studied in weak systems via representations (aka codes) in the language of second-order arithmetic.
READ FULL TEXT