Local Prediction Aggregation: A Frustratingly Easy Source-free Domain Adaptation Method

05/09/2022
by   Shiqi Yang, et al.
0

We propose a simple but effective source-free domain adaptation (SFDA) method. Treating SFDA as an unsupervised clustering problem and following the intuition that local neighbors in feature space should have more similar predictions than other features, we propose to optimize an objective of prediction consistency. This objective encourages local neighborhood features in feature space to have similar predictions while features farther away in feature space have dissimilar predictions, leading to efficient feature clustering and cluster assignment simultaneously. For efficient training, we seek to optimize an upper-bound of the objective which contains two simple terms. Furthermore, we relate popular existing methods in domain adaptation, source-free domain adaptation and contrastive learning via the perspective of discriminability and diversity. The experimental results prove the superiority of our method, and our method can be adopted as a simple but strong baseline for future research in SFDA. Code is available in https://github.com/Albert0147/LPA_SFDA.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset