Locally-symplectic neural networks for learning volume-preserving dynamics

09/19/2021
by   Jānis Bajārs, et al.
0

We propose locally-symplectic neural networks LocSympNets for learning volume-preserving dynamics. The construction of LocSympNets stems from the theorem of local Hamiltonian description of the vector field of a volume-preserving dynamical system and the splitting methods based on symplectic integrators. Modified gradient modules of recently proposed symplecticity-preserving neural networks SympNets are used to construct locally-symplectic modules, which composition results in volume-preserving neural networks. LocSympNets are studied numerically considering linear and nonlinear dynamics, i.e., semi-discretized advection equation and Euler equations of the motion of a free rigid body, respectively. LocSympNets are able to learn linear and nonlinear dynamics to high degree of accuracy. When learning a single trajectory of the rigid body dynamics LocSympNets are able to learn both invariants of the system with absolute relative errors below 1 long-time predictions and produce qualitatively good short-time predictions, when the learning of the whole system from randomly sampled data is considered.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro