LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point Cloud Registration

by   Weixiao Liu, et al.
National University of Singapore

Probabilistic point cloud registration methods are becoming more popular because of their robustness. However, unlike point-to-plane variants of iterative closest point (ICP) which incorporate local surface geometric information such as surface normals, most probabilistic methods (e.g., coherent point drift (CPD)) ignore such information and build Gaussian mixture models (GMMs) with isotropic Gaussian covariances. This results in sphere-like GMM components which only penalize the point-to-point distance between the two point clouds. In this paper, we propose a novel method called CPD with Local Surface Geometry (LSG-CPD) for rigid point cloud registration. Our method adaptively adds different levels of point-to-plane penalization on top of the point-to-point penalization based on the flatness of the local surface. This results in GMM components with anisotropic covariances. We formulate point cloud registration as a maximum likelihood estimation (MLE) problem and solve it with the Expectation-Maximization (EM) algorithm. In the E step, we demonstrate that the computation can be recast into simple matrix manipulations and efficiently computed on a GPU. In the M step, we perform an unconstrained optimization on a matrix Lie group to efficiently update the rigid transformation of the registration. The proposed method outperforms state-of-the-art algorithms in terms of accuracy and robustness on various datasets captured with range scanners, RGBD cameras, and LiDARs. Also, it is significantly faster than modern implementations of CPD. The code will be released.


GraphReg: Dynamical Point Cloud Registration with Geometry-aware Graph Signal Processing

This study presents a high-accuracy, efficient, and physically induced m...

Fast and Accurate Point Cloud Registration using Trees of Gaussian Mixtures

Point cloud registration sits at the core of many important and challeng...

FilterReg: Robust and Efficient Probabilistic Point-Set Registration using Gaussian Filter and Twist Parameterization

Probabilistic point-set registration methods have been gaining more atte...

Fast Coherent Point Drift

Nonrigid point set registration is widely applied in the tasks of comput...

Robust and Accurate Superquadric Recovery: a Probabilistic Approach

Interpreting objects with basic geometric primitives has long been studi...

A multi-organ point cloud registration algorithm for abdominal CT registration

Registering CT images of the chest is a crucial step for several tasks s...

The Coherent Point Drift for Clustered Point Sets

The problem of non-rigid point set registration is a key problem for man...

Please sign up or login with your details

Forgot password? Click here to reset