MAD-X: An Adapter-based Framework for Multi-task Cross-lingual Transfer

04/30/2020
by   Jonas Pfeiffer, et al.
0

The main goal behind state-of-the-art pretrained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pretraining. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pretrained multilingual model to a new language. MAD-X outperforms the state of the art in cross-lingual transfer across a representative set of typologically diverse languages on named entity recognition and achieves competitive results on question answering.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset