MAD-X: An Adapter-based Framework for Multi-task Cross-lingual Transfer
The main goal behind state-of-the-art pretrained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pretraining. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pretrained multilingual model to a new language. MAD-X outperforms the state of the art in cross-lingual transfer across a representative set of typologically diverse languages on named entity recognition and achieves competitive results on question answering.
READ FULL TEXT