Mapping Temporary Slums from Satellite Imagery using a Semi-Supervised Approach

04/09/2022
by   M. Fasi ur Rehman, et al.
0

One billion people worldwide are estimated to be living in slums, and documenting and analyzing these regions is a challenging task. As compared to regular slums; the small, scattered and temporary nature of temporary slums makes data collection and labeling tedious and time-consuming. To tackle this challenging problem of temporary slums detection, we present a semi-supervised deep learning segmentation-based approach; with the strategy to detect initial seed images in the zero-labeled data settings. A small set of seed samples (32 in our case) are automatically discovered by analyzing the temporal changes, which are manually labeled to train a segmentation and representation learning module. The segmentation module gathers high dimensional image representations, and the representation learning module transforms image representations into embedding vectors. After that, a scoring module uses the embedding vectors to sample images from a large pool of unlabeled images and generates pseudo-labels for the sampled images. These sampled images with their pseudo-labels are added to the training set to update the segmentation and representation learning modules iteratively. To analyze the effectiveness of our technique, we construct a large geographically marked dataset of temporary slums. This dataset constitutes more than 200 potential temporary slum locations (2.28 square kilometers) found by sieving sixty-eight thousand images from 12 metropolitan cities of Pakistan covering 8000 square kilometers. Furthermore, our proposed method outperforms several competitive semi-supervised semantic segmentation baselines on a similar setting. The code and the dataset will be made publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro