Master Equation for Discrete-Time Stackelberg Mean Field Games with single leader

01/16/2022
by   Deepanshu Vasal, et al.
0

In this paper, we consider a discrete-time Stackelberg mean field game with a leader and an infinite number of followers. The leader and the followers each observe types privately that evolve as conditionally independent controlled Markov processes. The leader commits to a dynamic policy and the followers best respond to that policy and each other. Knowing that the followers would play a mean field game based on her policy, the leader chooses a policy that maximizes her reward. We refer to the resulting outcome as a Stackelberg mean field equilibrium (SMFE). In this paper, we provide a master equation of this game that allows one to compute all SMFE. Based on our framework, we consider two numerical examples. First, we consider an epidemic model where the followers get infected based on the mean field population. The leader chooses subsidies for a vaccine to maximize social welfare and minimize vaccination costs. In the second example, we consider a technology adoption game where the followers decide to adopt a technology or a product and the leader decides the cost of one product that maximizes his returns, which are proportional to the people adopting that technology

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset