Maximum Likelihood Estimation of Optimal Receiver Operating Characteristic Curves from Likelihood Ratio Observations

by   Bruce Hajek, et al.

The optimal receiver operating characteristic (ROC) curve, giving the maximum probability of detection as a function of the probability of false alarm, is a key information-theoretic indicator of the difficulty of a binary hypothesis testing problem (BHT). It is well known that the optimal ROC curve for a given BHT, corresponding to the likelihood ratio test, is theoretically determined by the probability distribution of the observed data under each of the two hypotheses. In some cases, these two distributions may be unknown or computationally intractable, but independent samples of the likelihood ratio can be observed. This raises the problem of estimating the optimal ROC for a BHT from such samples. The maximum likelihood estimator of the optimal ROC curve is derived, and it is shown to converge to the true optimal ROC curve in the metric, as the number of observations tends to infinity. A classical empirical estimator, based on estimating the two types of error probabilities from two separate sets of samples, is also considered. The maximum likelihood estimator is observed in simulation experiments to be considerably more accurate than the empirical estimator, especially when the number of samples obtained under one of the two hypotheses is small. The area under the maximum likelihood estimator is derived; it is a consistent estimator of the true area under the optimal ROC curve.


page 1

page 5


Maximum Likelihood Estimation for Maximal Distribution under Sublinear Expectation

Maximum likelihood estimation is a common method of estimating the param...

The f-divergence and Loss Functions in ROC Curve

Given two data distributions and a test score function, the Receiver Ope...

Optimal ROC Curves from Score Variable Threshold Tests

The Receiver Operating Characteristic (ROC) is a well-established repres...

Maximum Likelihood Estimation for Learning Populations of Parameters

Consider a setting with N independent individuals, each with an unknown ...

Inverse Ising inference from high-temperature re-weighting of observations

Maximum Likelihood Estimation (MLE) is the bread and butter of system in...

Interaction Screening: Efficient and Sample-Optimal Learning of Ising Models

We consider the problem of learning the underlying graph of an unknown I...

Global Consistency of Empirical Likelihood

This paper develops several interesting, significant, and interconnected...

Please sign up or login with your details

Forgot password? Click here to reset