Measuring the Diversity of Facebook Reactions to Research

by   Cole Freeman, et al.

Online and in the real world, communities are bonded together by emotional consensus around core issues. Emotional responses to scientific findings often play a pivotal role in these core issues. When there is too much diversity of opinion on topics of science, emotions flare up and give rise to conflict. This conflict threatens positive outcomes for research. Emotions have the power to shape how people process new information. They can color the public's understanding of science, motivate policy positions, even change lives. And yet little work has been done to evaluate the public's emotional response to science using quantitative methods. In this paper, we use a dataset of responses to scholarly articles on Facebook to analyze the dynamics of emotional valence, intensity, and diversity. We present a novel way of weighting click-based reactions that increases their comprehensibility, and use these weighted reactions to develop new metrics of aggregate emotional responses. We use our metrics along with LDA topic models and statistical testing to investigate how users' emotional responses differ from one scientific topic to another. We find that research articles related to gender, genetics, or agricultural/environmental sciences elicit significantly different emotional responses from users than other research topics. We also find that there is generally a positive response to scientific research on Facebook, and that articles generating a positive emotional response are more likely to be widely shared—a conclusion that contradicts previous studies of other social media platforms.


Public Reaction to Scientific Research via Twitter Sentiment Prediction

Social media users share their ideas, thoughts, and emotions with other ...

Measuring Emotions in the COVID-19 Real World Worry Dataset

The COVID-19 pandemic is having a dramatic impact on societies and econo...

Shared Feelings: Understanding Facebook Reactions to Scholarly Articles

Research on social-media platforms has tended to rely on textual analysi...

Facebook Reaction-Based Emotion Classifier as Cue for Sarcasm Detection

Online social media users react to content in them based on context. Emo...

Online geolocalized emotion across US cities during the COVID crisis: Universality, policy response, and connection with local mobility

As the COVID-19 pandemic began to sweep across the US it elicited a wide...

Revealing semantic and emotional structure of suicide notes with cognitive network science

Understanding the cognitive and emotional perceptions of people who comm...

Please sign up or login with your details

Forgot password? Click here to reset