Memory-efficient Reinforcement Learning with Knowledge Consolidation

05/22/2022
by   Qingfeng Lan, et al.
0

Artificial neural networks are promising as general function approximators but challenging to train on non-independent and identically distributed data due to catastrophic forgetting. Experience replay, a standard component in deep reinforcement learning, is often used to reduce forgetting and improve sample efficiency by storing experiences in a large buffer and using them for training later. However, a large replay buffer results in a heavy memory burden, especially for onboard and edge devices with limited memory capacities. We propose memory-efficient reinforcement learning algorithms based on the deep Q-network algorithm to alleviate this problem. Our algorithms reduce forgetting and maintain high sample efficiency by consolidating knowledge from the target Q-network to the current Q-network. Compared to baseline methods, our algorithms achieve comparable or better performance on both feature-based and image-based tasks while easing the burden of large experience replay buffers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro