Mercator: uncovering faithful hyperbolic embeddings of complex networks

by   Guillermo García-Pérez, et al.

We introduce Mercator, a reliable embedding method to map real complex networks into their hyperbolic latent geometry. The method assumes that the structure of networks is well described by the Popularity×Similarity S^1/H^2 static geometric network model, which can accommodate arbitrary degree distributions and reproduces many pivotal properties of real networks, including self-similarity patterns. The algorithm mixes machine learning and maximum likelihood approaches to infer the coordinates of the nodes in the underlying hyperbolic disk with the best matching between the observed network topology and the geometric model. In its fast mode, Mercator uses a model-adjusted machine learning technique performing dimensional reduction to produce a fast and accurate map, whose quality already outperform other embedding algorithms in the literature. In the refined Mercator mode, the fast-mode embedding result is taken as an initial condition in a Maximum Likelihood estimation, which significantly improves the quality of the final embedding. Apart from its accuracy as an embedding tool, Mercator has the clear advantage of systematically inferring not only node orderings, or angular positions, but also the hidden degrees and global model parameters, and has the ability to embed networks with arbitrary degree distributions. Overall, our results suggest that mixing machine learning and maximum likelihood techniques in a model-dependent framework can boost the meaningful mapping of complex networks.


page 1

page 2

page 3

page 4


Optimisation of the coalescent hyperbolic embedding of complex networks

Several observations indicate the existence of a latent hyperbolic space...

Maximum Likelihood Coordinate Systems for Wireless Sensor Networks: from physical coordinates to topology coordinates

Many WSN protocols require the location coordinates of the sensor nodes,...

Angular separability of data clusters or network communities in geometrical space and its relevance to hyperbolic embedding

Analysis of 'big data' characterized by high-dimensionality such as word...

Learning graph-structured data using Poincaré embeddings and Riemannian K-means algorithms

Recent literature has shown several benefits of hyperbolic embedding of ...

Topology and Geometry of the Third-Party Domains Ecosystem

Over the years, web content has evolved from simple text and static imag...

Please sign up or login with your details

Forgot password? Click here to reset