MinMaxLTTB: Leveraging MinMax-Preselection to Scale LTTB

by   Jeroen Van Der Donckt, et al.

Visualization plays an important role in analyzing and exploring time series data. To facilitate efficient visualization of large datasets, downsampling has emerged as a well-established approach. This work concentrates on LTTB (Largest-Triangle-Three-Buckets), a widely adopted downsampling algorithm for time series data point selection. Specifically, we propose MinMaxLTTB, a two-step algorithm that marks a significant enhancement in the scalability of LTTB. MinMaxLTTB entails the following two steps: (i) the MinMax algorithm preselects a certain ratio of minimum and maximum data points, followed by (ii) applying the LTTB algorithm on only these preselected data points, effectively reducing LTTB's time complexity. The low computational cost of the MinMax algorithm, along with its parallelization capabilities, facilitates efficient preselection of data points. Additionally, the competitive performance of MinMax in terms of visual representativeness also makes it an effective reduction method. Experiments show that MinMaxLTTB outperforms LTTB by more than an order of magnitude in terms of computation time. Furthermore, preselecting a small multiple of the desired output size already provides similar visual representativeness compared to LTTB. In summary, MinMaxLTTB leverages the computational efficiency of MinMax to scale LTTB, without compromising on LTTB's favored visualization properties. The accompanying code and experiments of this paper can be found at https://github.com/predict-idlab/MinMaxLTTB.


page 1

page 2

page 3

page 4


Plotly-Resampler: Effective Visual Analytics for Large Time Series

Visual analytics is arguably the most important step in getting acquaint...

Uniform-in-Phase-Space Data Selection with Iterative Normalizing Flows

Improvements in computational and experimental capabilities are rapidly ...

Data Point Selection for Line Chart Visualization: Methodological Assessment and Evidence-Based Guidelines

Time series visualization plays a crucial role in identifying patterns a...

Dominant Dataset Selection Algorithms for Time-Series Data Based on Linear Transformation

With the explosive growth of time-series data, the scale of time-series ...

tsdownsample: high-performance time series downsampling for scalable visualization

Interactive line chart visualizations greatly enhance the effective expl...

Reclaiming the Horizon: Novel Visualization Designs for Time-Series Data with Large Value Ranges

We introduce two novel visualization designs to support practitioners in...

SkyCell: A Space-Pruning Based Parallel Skyline Algorithm

Skyline computation is an essential database operation that has many app...

Please sign up or login with your details

Forgot password? Click here to reset