Model-based Safe Deep Reinforcement Learning via a Constrained Proximal Policy Optimization Algorithm

10/14/2022
by   Ashish Kumar Jayant, et al.
0

During initial iterations of training in most Reinforcement Learning (RL) algorithms, agents perform a significant number of random exploratory steps. In the real world, this can limit the practicality of these algorithms as it can lead to potentially dangerous behavior. Hence safe exploration is a critical issue in applying RL algorithms in the real world. This problem has been recently well studied under the Constrained Markov Decision Process (CMDP) Framework, where in addition to single-stage rewards, an agent receives single-stage costs or penalties as well depending on the state transitions. The prescribed cost functions are responsible for mapping undesirable behavior at any given time-step to a scalar value. The goal then is to find a feasible policy that maximizes reward returns while constraining the cost returns to be below a prescribed threshold during training as well as deployment. We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner as well as find a feasible optimal policy using the Lagrangian Relaxation-based Proximal Policy Optimization. We use an ensemble of neural networks with different initializations to tackle epistemic and aleatoric uncertainty issues faced during environment model learning. We compare our approach with relevant model-free and model-based approaches in Constrained RL using the challenging Safe Reinforcement Learning benchmark - the Open AI Safety Gym. We demonstrate that our algorithm is more sample efficient and results in lower cumulative hazard violations as compared to constrained model-free approaches. Further, our approach shows better reward performance than other constrained model-based approaches in the literature.

READ FULL TEXT

page 9

page 15

research
04/14/2021

Safe Continuous Control with Constrained Model-Based Policy Optimization

The applicability of reinforcement learning (RL) algorithms in real-worl...
research
03/20/2020

Interpretable Multi Time-scale Constraints in Model-free Deep Reinforcement Learning for Autonomous Driving

In many real world applications, reinforcement learning agents have to o...
research
10/20/2022

Safe Policy Improvement in Constrained Markov Decision Processes

The automatic synthesis of a policy through reinforcement learning (RL) ...
research
12/24/2020

Assured RL: Reinforcement Learning with Almost Sure Constraints

We consider the problem of finding optimal policies for a Markov Decisio...
research
02/23/2018

Budget Constrained Bidding by Model-free Reinforcement Learning in Display Advertising

Real-time bidding (RTB) is almost the most important mechanism in online...
research
03/26/2021

Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow

In the past decade, model-free reinforcement learning (RL) has provided ...
research
01/24/2023

AutoCost: Evolving Intrinsic Cost for Zero-violation Reinforcement Learning

Safety is a critical hurdle that limits the application of deep reinforc...

Please sign up or login with your details

Forgot password? Click here to reset