Model Conversion via Differentially Private Data-Free Distillation

04/25/2023
by   Bochao Liu, et al.
0

While massive valuable deep models trained on large-scale data have been released to facilitate the artificial intelligence community, they may encounter attacks in deployment which leads to privacy leakage of training data. In this work, we propose a learning approach termed differentially private data-free distillation (DPDFD) for model conversion that can convert a pretrained model (teacher) into its privacy-preserving counterpart (student) via an intermediate generator without access to training data. The learning collaborates three parties in a unified way. First, massive synthetic data are generated with the generator. Then, they are fed into the teacher and student to compute differentially private gradients by normalizing the gradients and adding noise before performing descent. Finally, the student is updated with these differentially private gradients and the generator is updated by taking the student as a fixed discriminator in an alternate manner. In addition to a privacy-preserving student, the generator can generate synthetic data in a differentially private way for other downstream tasks. We theoretically prove that our approach can guarantee differential privacy and well convergence. Extensive experiments clearly demonstrate that our approach significantly outperform other differentially private generative approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset