Monarch: A Durable Polymorphic Memory For Data Intensive Applications

08/19/2021
by   Ananth Krishna Prasad, et al.
0

3D die stacking has often been proposed to build large-scale DRAM-based caches. Unfortunately, the power and performance overheads of DRAM limit the efficiency of high-bandwidth memories. Also, DRAM is facing serious scalability challenges that make alternative technologies more appealing. This paper examines Monarch, a resistive 3D stacked memory based on a novel reconfigurable crosspoint array called XAM. The XAM array is capable of switching between random access and content-addressable modes, which enables Monarch (i) to better utilize the in-package bandwidth and (ii) to satisfy both the random access memory and associative search requirements of various applications. Moreover, the Monarch controller ensures a given target lifetime for the resistive stack. Our simulation results on a set of parallel memory-intensive applications indicate that Monarch outperforms an ideal DRAM caching by 1.21x on average. For in-memory hash table and string matching workloads, Monarch improves performance up to 12x over the conventional high bandwidth memories.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset