Near Neighbor Search via Efficient Average Distortion Embeddings

05/10/2021
by   Deepanshu Kush, et al.
0

A recent series of papers by Andoni, Naor, Nikolov, Razenshteyn, and Waingarten (STOC 2018, FOCS 2018) has given approximate near neighbour search (NNS) data structures for a wide class of distance metrics, including all norms. In particular, these data structures achieve approximation on the order of p for ℓ_p^d norms with space complexity nearly linear in the dataset size n and polynomial in the dimension d, and query time sub-linear in n and polynomial in d. The main shortcoming is the exponential in d pre-processing time required for their construction. In this paper, we describe a more direct framework for constructing NNS data structures for general norms. More specifically, we show via an algorithmic reduction that an efficient NNS data structure for a given metric is implied by an efficient average distortion embedding of it into ℓ_1 or into Euclidean space. In particular, the resulting data structures require only polynomial pre-processing time, as long as the embedding can be computed in polynomial time. As a concrete instantiation of this framework, we give an NNS data structure for ℓ_p with efficient pre-processing that matches the approximation factor, space and query complexity of the aforementioned data structure of Andoni et al. On the way, we resolve a question of Naor (Analysis and Geometry in Metric Spaces, 2014) and provide an explicit, efficiently computable embedding of ℓ_p, for p ≥ 2, into ℓ_2 with (quadratic) average distortion on the order of p. We expect our approach to pave the way for constructing efficient NNS data structures for all norms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset