Neural Lyapunov Control for Discrete-Time Systems

by   Junlin Wu, et al.

While ensuring stability for linear systems is well understood, it remains a major challenge for systems with nonlinear dynamics. A general approach in such cases is to leverage Lyapunov stability theory to compute a combination of a Lyapunov control function and an associated control policy. However, finding Lyapunov functions for general nonlinear systems is a challenging task. To address this challenge, several methods have been recently proposed that represent Lyapunov functions using neural networks. However, such approaches have been designed exclusively for continuous-time systems. We propose the first approach for learning neural Lyapunov control in discrete-time systems. Three key ingredients enable us to effectively learn provably stable control policies. The first is a novel mixed-integer linear programming approach for verifying the stability conditions in discrete-time systems. The second is a novel approach for computing sub-level sets which characterize the region of attraction. Finally, we rely on a heuristic gradient-based approach for quickly finding counterexamples to significantly speed up Lyapunov function learning. Our experiments on four standard benchmarks demonstrate that our approach significantly outperforms state-of-the-art baselines. For example, on the path tracking benchmark, we outperform recent neural Lyapunov control baselines by an order of magnitude in both running time and the size of the region of attraction, and on two of the four benchmarks (cartpole and PVTOL), ours is the first automated approach to return a provably stable controller.


page 1

page 2

page 3

page 4


Stability Verification in Stochastic Control Systems via Neural Network Supermartingales

We consider the problem of formally verifying almost-sure (a.s.) asympto...

Neural System Level Synthesis: Learning over All Stabilizing Policies for Nonlinear Systems

We address the problem of designing stabilizing control policies for non...

Discrete-time data-driven control with Hölder-continuous real-time learning

This work provides a framework for data-driven control of discrete-time ...

Distributed Learning of Neural Lyapunov Functions for Large-Scale Networked Dissipative Systems

This paper considers the problem of characterizing the stability region ...

Switching systems with dwell time: computation of the maximal Lyapunov exponent

We study asymptotic stability of continuous-time systems with mode-depen...

Input Influence Matrix Design for MIMO Discrete-Time Ultra-Local Model

Ultra-Local Models (ULM) have been applied to perform model-free control...

Complete stability analysis of a heuristic ADP control design

This paper provides new stability results for Action-Dependent Heuristic...

Please sign up or login with your details

Forgot password? Click here to reset