Neuromorphic In-Memory Computing Framework using Memtransistor Cross-bar based Support Vector Machines
This paper presents a novel framework for designing support vector machines (SVMs), which does not impose restriction on the SVM kernel to be positive-definite and allows the user to define memory constraint in terms of fixed template vectors. This makes the framework scalable and enables its implementation for low-power, high-density and memory constrained embedded application. An efficient hardware implementation of the same is also discussed, which utilizes novel low power memtransistor based cross-bar architecture, and is robust to device mismatch and randomness. We used memtransistor measurement data, and showed that the designed SVMs can achieve state-of-the-art classification accuracy on both synthetic and real-world benchmark datasets. This framework would be beneficial for design of SVM based wake-up systems for internet of things (IoTs) and edge devices where memtransistors can be used to optimize system's energy-efficiency and perform in-memory matrix-vector multiplication (MVM).
READ FULL TEXT