Neyman-Pearson lemma for Bayes factors
We point out that the Neyman-Pearson lemma applies to Bayes factors if we consider expected type-1 and type-2 error rates. That is, the Bayes factor is the test statistic that maximises the expected power for a fixed expected type-1 error rate. For Bayes factors involving a simple null hypothesis, the expected type-1 error rate is just the completely frequentist type-1 error rate. Lastly we remark on connections between the Karlin-Rubin theorem and uniformly most powerful tests, and Bayes factors. This provides frequentist motivations for computing the Bayes factor and could help reconcile Bayesians and frequentists.
READ FULL TEXT