Non-stationary Bandits with Knapsacks

05/25/2022
by   Shang Liu, et al.
0

In this paper, we study the problem of bandits with knapsacks (BwK) in a non-stationary environment. The BwK problem generalizes the multi-arm bandit (MAB) problem to model the resource consumption associated with playing each arm. At each time, the decision maker/player chooses to play an arm, and s/he will receive a reward and consume certain amount of resource from each of the multiple resource types. The objective is to maximize the cumulative reward over a finite horizon subject to some knapsack constraints on the resources. Existing works study the BwK problem under either a stochastic or adversarial environment. Our paper considers a non-stationary environment which continuously interpolates between these two extremes. We first show that the traditional notion of variation budget is insufficient to characterize the non-stationarity of the BwK problem for a sublinear regret due to the presence of the constraints, and then we propose a new notion of global non-stationarity measure. We employ both non-stationarity measures to derive upper and lower bounds for the problem. Our results are based on a primal-dual analysis of the underlying linear programs and highlight the interplay between the constraints and the non-stationarity. Finally, we also extend the non-stationarity measure to the problem of online convex optimization with constraints and obtain new regret bounds accordingly.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset