Nonlinear Higher-Order Label Spreading

06/08/2020
by   Francesco Tudisco, et al.
0

Label spreading is a general technique for semi-supervised learning with point cloud or network data, which can be interpreted as a diffusion of labels on a graph. While there are many variants of label spreading, nearly all of them are linear models, where the incoming information to a node is a weighted sum of information from neighboring nodes. Here, we add nonlinearity to label spreading through nonlinear functions of higher-order structure in the graph, namely triangles in the graph. For a broad class of nonlinear functions, we prove convergence of our nonlinear higher-order label spreading algorithm to the global solution of a constrained semi-supervised loss function. We demonstrate the efficiency and efficacy of our approach on a variety of point cloud and network datasets, where the nonlinear higher-order model compares favorably to classical label spreading, as well as hypergraph models and graph neural networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset