Nonlinear quantile mixed models
In regression applications, the presence of nonlinearity and correlation among observations offer computational challenges not only in traditional settings such as least squares regression, but also (and especially) when the objective function is non-smooth as in the case of quantile regression. In this paper, we develop methods for the modeling and estimation of nonlinear conditional quantile functions when data are clustered within two-level nested designs. This work represents an extension of the linear quantile mixed models of Geraci and Bottai (2014, Statistics and Computing). We develop a novel algorithm which is a blend of a smoothing algorithm for quantile regression and a second order Laplacian approximation for nonlinear mixed models. To assess the proposed methods, we present a simulation study and two applications, one in pharmacokinetics and one related to growth curve modeling in agriculture.
READ FULL TEXT