On amenability of constraint satisfaction problems

03/29/2020
by   Michal R. Przybylek, et al.
0

Recent results show that a constraint satisfaction problem (CSP) defined over rational numbers with their natural ordering has a solution if and only if it has a definable solution. The proof uses advanced results from topology and modern model theory. The aim of this paper is threefold. (1) We give a simple purely-logical proof of the claim and show that the advanced results from topology and model theory are not needed; (2) we introduce an intrinsic characterisation of the statement "definable CSP has a solution iff it has a definable solution" and investigate it in general intuitionistic set theories (3) we show that the results from modern model theory are indeed needed, but for the implication reversed: we prove that "definable CSP has a solution iff it has a definable solution" holds over a countable structure if and only if the automorphism group of the structure is extremely amenable.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset