On Computing Optimal Linear Diagrams

06/17/2022
by   Alexander Dobler, et al.
0

Linear diagrams are an effective way to visualize set-based data by representing elements as columns and sets as rows with one or more horizontal line segments, whose vertical overlaps with other rows indicate set intersections and their contained elements. The efficacy of linear diagrams heavily depends on having few line segments. The underlying minimization problem has already been explored heuristically, but its computational complexity has yet to be classified. In this paper, we show that minimizing line segments in linear diagrams is equivalent to a well-studied NP-hard problem, and extend the NP-hardness to a restricted setting. We develop new algorithms for computing linear diagrams with minimum number of line segments that build on a traveling salesperson (TSP) formulation and allow constraints on the element orders, namely, forcing two sets to be drawn as single line segments, giving weights to sets, and allowing hierarchical constraints via PQ-trees. We conduct an experimental evaluation and compare previous algorithms for minimizing line segments with our TSP formulation, showing that a state-of-the art TSP-solver can solve all considered instances optimally, most of them within few milliseconds.

READ FULL TEXT
research
04/30/2019

Constrained Orthogonal Segment Stabbing

Let S and D each be a set of orthogonal line segments in the plane. A li...
research
02/16/2023

LinSets.zip: Compressing Linear Set Diagrams

Linear diagrams are used to visualize set systems by depicting set membe...
research
08/02/2017

Line Segment Covering of Cells in Arrangements

Given a collection L of line segments, we consider its arrangement and s...
research
07/07/2021

Minimum Constraint Removal Problem for Line Segments is NP-hard

In the minimum constraint removal (MCR), there is no feasible path to mo...
research
08/16/2022

MosaicSets: Embedding Set Systems into Grid Graphs

Visualizing sets of elements and their relations is an important researc...
research
03/15/2021

A fast and scalable bottom-left-fill algorithm to solve nesting problems using a semi-discrete representation

We present a fast algorithm to solve nesting problems based on a semi-di...
research
06/25/2020

An Efficient, Practical Algorithm and Implementation for Computing Multiplicatively Weighted Voronoi Diagrams

We present a simple wavefront-like approach for computing multiplicative...

Please sign up or login with your details

Forgot password? Click here to reset