On digital sequences associated with Pascal's triangle

01/17/2022
by   Pierre Mathonet, et al.
0

We consider the sequence of integers whose nth term has base-p expansion given by the nth row of Pascal's triangle modulo p (where p is a prime number). We first present and generalize well-known relations concerning this sequence. Then, with the great help of Sloane's On-Line Encyclopedia of Integer Sequences, we show that it appears naturally as a subsequence of a 2-regular sequence. Its study provides interesting relations and surprisingly involves odious and evil numbers, Nim-sum and even Gray codes. Furthermore, we examine similar sequences emerging from prime numbers involving alternating sum-of-digits modulo p. This note ends with a discussion about Pascal's pyramid involving trinomial coefficients.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro