On Second-order Optimization Methods for Federated Learning

09/06/2021
by   Sebastian Bischoff, et al.
0

We consider federated learning (FL), where the training data is distributed across a large number of clients. The standard optimization method in this setting is Federated Averaging (FedAvg), which performs multiple local first-order optimization steps between communication rounds. In this work, we evaluate the performance of several second-order distributed methods with local steps in the FL setting which promise to have favorable convergence properties. We (i) show that FedAvg performs surprisingly well against its second-order competitors when evaluated under fair metrics (equal amount of local computations)-in contrast to the results of previous work. Based on our numerical study, we propose (ii) a novel variant that uses second-order local information for updates and a global line search to counteract the resulting local specificity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro