On the solution of contact problems with Tresca friction by the semismooth* Newton method

03/03/2021
by   Helmut Gfrerer, et al.
0

An equilibrium of a linear elastic body subject to loading and satisfying the friction and contact conditions can be described by a variational inequality of the second kind and the respective discrete model attains the form of a generalized equation. To its numerical solution we apply the semismooth* Newton method by Gfrerer and Outrata (2019) in which, in contrast to most available Newton-type methods for inclusions, one approximates not only the single-valued but also the multi-valued part. This is performed on the basis of limiting (Morduchovich) coderivative. In our case of the Tresca friction, the multi-valued part amounts to the subdifferential of a convex function generated by the friction and contact conditions. The full 3D discrete problem is then reduced to the contact boundary. Implementation details of the semismooth* Newton method are provided and numerical tests demonstrate its superlinear convergence and mesh independence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset