Online search of unknown terrains using a dynamical system-based path planning approach
Surveillance and exploration of large environments is a tedious task. In spaces with limited environmental cues, random-like search appears to be an effective approach as it allows the robot to perform online coverage of environments using a simple design. One way to generate random-like scanning is to use nonlinear dynamical systems to impart chaos into the robot's controller. This will result in generation of unpredictable but at the same time deterministic trajectories, allowing the designer to control the system and achieve a high scanning coverage. However, the unpredictability comes at the cost of increased coverage time and lack of scalability, both of which have been ignored by the state-of-the-art chaotic path planners. This study introduces a new scalable technique that helps a robot to steer away from the obstacles and cover the entire space in a short period of time. The technique involves coupling and manipulating two chaotic systems to minimize the coverage time and enable scanning of unknown environments with different properties online. Using this technique resulted in 49 performance compared to the state-of-the-art planners. While ensuring unpredictability in the paths, the overall performance of the chaotic planner remained comparable to optimal systems.
READ FULL TEXT