Pair-switching rerandomization

03/24/2021
by   Ke Zhu, et al.
0

Rerandomization discards assignments with covariates unbalanced in the treatment and control groups to improve the estimation and inference efficiency. However, the acceptance-rejection sampling method used by rerandomization is computationally inefficient. As a result, it is time-consuming for classical rerandomization to draw numerous independent assignments, which are necessary for constructing Fisher randomization tests. To address this problem, we propose a pair-switching rerandomization method to draw balanced assignments much efficiently. We show that the difference-in-means estimator is unbiased for the average treatment effect and the Fisher randomization tests are valid under pair-switching rerandomization. In addition, our method is applicable in both non-sequentially and sequentially randomized experiments. We conduct comprehensive simulation studies to compare the finite-sample performances of the proposed method and classical rerandomization. Simulation results indicate that pair-switching rerandomization leads to comparable power of Fisher randomization tests and is 4-18 times faster than classical rerandomization. Finally, we apply the pair-switching rerandomization method to analyze two clinical trial data sets, both demonstrating the advantages of our method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset