Parameter Estimation for Weak Variance-Alpha-Gamma Processes

01/26/2018
by   Boris Buchmann, et al.
0

The weak variance-alpha-gamma process is a multivariate Lévy process constructed by weakly subordinating Brownian motion, possibly with correlated components with an alpha-gamma subordinator. It generalises the variance-alpha-gamma process of Semeraro constructed by traditional subordination. We compare three parameter estimation methods for the weak variance-alpha-gamma process, method of moments, maximum likelihood estimation (MLE) and digital moment estimation (DME). We derive a condition for Fourier invertibility needed to apply MLE and show in our simulations that MLE produces a better fit when this condition holds, while DME produces a better fit when it is violated. We also find that the weak variance-alpha-gamma process exhibits a wider range of dependence and produces a significantly better fit than the variance-alpha-gamma process on a S&P500-FTSE100 data set, and that DME produces the best fit in this situation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro