Parameterized Complexity of Minimum Membership Dominating Set

10/13/2021
by   Akanksha Agrawal, et al.
0

Given a graph G=(V,E) and an integer k, the Minimum Membership Dominating Set (MMDS) problem seeks to find a dominating set S ⊆ V of G such that for each v ∈ V, |N[v] ∩ S| is at most k. We investigate the parameterized complexity of the problem and obtain the following results about MMDS: W[1]-hardness of the problem parameterized by the pathwidth (and thus, treewidth) of the input graph. W[1]-hardness parameterized by k on split graphs. An algorithm running in time 2^𝒪(vc) |V|^𝒪(1), where vc is the size of a minimum-sized vertex cover of the input graph. An ETH-based lower bound showing that the algorithm mentioned in the previous item is optimal.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset