Patchwise Generative ConvNet: Training Energy-Based Models from a Single Natural Image for Internal Learning
Exploiting internal statistics of a single natural image has long been recognized as a significant research paradigm where the goal is to learn the internal distribution of patches within the image without relying on external training data. Different from prior works that model such a distribution implicitly with a top-down latent variable model (e.g., generator), this paper proposes to explicitly represent the statistical distribution within a single natural image by using an energy-based generative framework, where a pyramid of energy functions, each parameterized by a bottom-up deep neural network, is used to capture the distributions of patches at different resolutions. Meanwhile, a coarse-to-fine sequential training and sampling strategy is presented to train the model efficiently. Besides learning to generate random samples from white noise, the model can learn in parallel with a self-supervised task (e.g., recover the input image from its corrupted version), which can further improve the descriptive power of the learned model.
READ FULL TEXT