Patient Recruitment Using Electronic Health Records Under Selection Bias: a Two-phase Sampling Framework

by   Guanghao Zhang, et al.

Electronic health records (EHRs) are increasingly recognized as a cost-effective resource for patient recruitment for health research. Suppose we want to conduct a study to estimate the mean or mean difference of an expensive outcome in a target population. Inexpensive auxiliary covariates predictive of the outcome may often be available in patients' health records, presenting an opportunity to recruit patients selectively and estimate the mean outcome efficiently. In this paper, we propose a two-phase sampling design that leverages available information on auxiliary covariates in EHR data. A key challenge in using EHR data for multi-phase sampling is the potential selection bias, because EHR data are not necessarily representative of the target population. Extending existing literature on two-phase sampling designs, we derive an optimal two-phase sampling method that improves efficiency over random sampling while accounting for the potential selection bias in EHR data. We demonstrate the efficiency gain of our sampling design by conducting finite sample simulation studies and an application study based on data from the Michigan Genomics Initiative.


page 1

page 2

page 3

page 4


Two-phase analysis and study design for survival models with error-prone exposures

Increasingly, medical research is dependent on data collected for non-re...

Improving Estimation Efficiency for Two-Phase, Outcome-Dependent Sampling Studies

Two-phase outcome dependent sampling (ODS) is widely used in many fields...

Selective recruitment designs for improving observational studies using electronic health records

Large scale electronic health records (EHRs) present an opportunity to q...

Generalized Linear Models for Longitudinal Data with Biased Sampling Designs: A Sequential Offsetted Regressions Approach

Biased sampling designs can be highly efficient when studying rare (bina...

Optimal Designs of Two-Phase Case-Control Studies for General Predictor Effects

Under two-phase designs, the outcome and several covariates and confound...

Model-assisted cohort selection with bias analysis for generating large-scale cohorts from the EHR for oncology research

Objective Electronic health records (EHRs) are a promising source of dat...

Please sign up or login with your details

Forgot password? Click here to reset