Pixel-Level Face Image Quality Assessment for Explainable Face Recognition
An essential factor to achieve high performance in face recognition systems is the quality of its samples. Since these systems are involved in various daily life there is a strong need of making face recognition processes understandable for humans. In this work, we introduce the concept of pixel-level face image quality that determines the utility of pixels in a face image for recognition. Given an arbitrary face recognition network, in this work, we propose a training-free approach to assess the pixel-level qualities of a face image. To achieve this, a model-specific quality value of the input image is estimated and used to build a sample-specific quality regression model. Based on this model, quality-based gradients are back-propagated and converted into pixel-level quality estimates. In the experiments, we qualitatively and quantitatively investigated the meaningfulness of the pixel-level qualities based on real and artificial disturbances and by comparing the explanation maps on ICAO-incompliant faces. In all scenarios, the results demonstrate that the proposed solution produces meaningful pixel-level qualities. The code is publicly available.
READ FULL TEXT