Power Control and Channel Allocation for D2D Underlaid Cellular Networks

by   Asmaa Abdallah, et al.

Device-to-Device (D2D) communications underlaying cellular networks is a viable network technology that can potentially increase spectral utilization and improve power efficiency for proximitybased wireless applications and services. However, a major challenge in such deployment scenarios is the interference caused by D2D links when sharing the same resources with cellular users. In this work, we propose a channel allocation (CA) scheme together with a set of three power control (PC) schemes to mitigate interference in a D2D underlaid cellular system modeled as a random network using the mathematical tool of stochastic geometry. The novel aspect of the proposed CA scheme is that it enables D2D links to share resources with multiple cellular users as opposed to one as previously considered in the literature. Moreover, the accompanying distributed PC schemes further manage interference during link establishment and maintenance. The first two PC schemes compensate for large-scale path-loss effects and maximize the D2D sum rate by employing distance-dependent pathloss parameters of the D2D link and the base station, including an error estimation margin. The third scheme is an adaptive PC scheme based on a variable target signal-to-interference-plus-noise ratio, which limits the interference caused by D2D users and provides sufficient coverage probability for cellular users. Closed-form expressions for the coverage probability of cellular links, D2D links, and sum rate of D2D links are derived in terms of the allocated power, density of D2D links, and path-loss exponent. The impact of these key system parameters on network performance is analyzed and compared with previous work. Simulation results demonstrate an enhancement in cellular and D2D coverage probabilities, and an increase in spectral and power efficiency.


page 1

page 2

page 3

page 4


Optimum Interference Management in Underlay Inband D2D-Enhanced Cellular Networks

For device-to-device (D2D) communications underlaying a cellular network...

Generalized Analysis and Optimization of D2D Communications in Cellular Networks

This paper develops an innovative approach to the modeling and analysis ...

Robust Transmission Design for Multi-Cell D2D Underlaid Cellular Networks

This paper investigates the robust transmission design (RTD) of a multi-...

Unified Scheduling for Predictable Communication Reliability in Cellular Networks with D2D Links

Cellular networks with D2D links are increasingly being explored for mis...

Multi-Agent Deep Reinforcement Learning based Spectrum Allocation for D2D Underlay Communications

Device-to-device (D2D) communication underlay cellular networks is a pro...

A Multi-Agent Deep Reinforcement Learning based Spectrum Allocation Framework for D2D Communications

Device-to-device (D2D) communication has been recognized as a promising ...

Agent-based simulations for coverage extensions in 5G networks and beyond

Device-to-device (D2D) communications is one of the key emerging technol...

Please sign up or login with your details

Forgot password? Click here to reset