Practical route to entanglement-enhanced communication over noisy bosonic channels

09/24/2019
by   Haowei Shi, et al.
0

Entanglement can offer substantial advantages in quantum information processing, but loss and noise hinder its applications in practical scenarios. Although it has been well known for decades that the classical communication capacity over lossy and noisy bosonic channels can be significantly enhanced by entanglement, no practical encoding and decoding schemes are available to realize any entanglement-enabled advantage. Here, we report structured encoding and decoding schemes for such an entanglement-assisted communication scenario. Specifically, we show that phase encoding on the entangled two-mode squeezed vacuum state saturates the entanglement-assisted classical communication capacity and overcomes the fundamental limit of covert communication without entanglement assistance. We then construct receivers for optimum hypothesis testing protocols under discrete phase modulation and for optimum noisy phase estimation protocols under continuous phase modulation. Our results pave the way for entanglement-assisted communication and sensing in the radiofrequency and microwave spectral ranges.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset