Q2Graph: a modelling tool for measurement-based quantum computing

10/03/2022
by   Greg Bowen, et al.
0

The quantum circuit model is the default for encoding an algorithm intended for a NISQ computer or a quantum computing simulator. A simple graph and through it, a graph state - quantum state physically manifesting an abstract graph structure - is syntactically expressive and tractable. A graph representation is well-suited for algorithms intended for a quantum computing facility founded on measurement-based quantum computing (MBQC) principles. Indeed, the process of creating an algorithm-specific graph can be efficiently realised through classical computing hardware. A graph state is a stabiliser state, which means a graph is a (quantum) intermediate representation at all points of the algorithm-specific graph process. We submit Q2Graph, a software package for designing and testing of simple graphs as algorithms for quantum computing facilities based on MQBC design principles. Q2Graph is a suitable modelling tool for NISQ computing facilities: the user is free to reason about structure or characteristics of its graph-as-algorithm without also having to account for (quantum) errors and their impact upon state.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset