Quadratic Approximation Manifold for Mitigating the Kolmogorov Barrier in Nonlinear Projection-Based Model Order Reduction

04/05/2022
by   Joshua Barnett, et al.
0

A quadratic approximation manifold is presented for performing nonlinear, projection-based, model order reduction (PMOR). It constitutes a departure from the traditional affine subspace approximation that is aimed at mitigating the Kolmogorov barrier for nonlinear PMOR, particularly for convection-dominated transport problems. It builds on the data-driven approach underlying the traditional construction of projection-based reduced-order models (PROMs); is application-independent; is linearization-free; and therefore is robust for highly nonlinear problems. Most importantly, this approximation leads to quadratic PROMs that deliver the same accuracy as their traditional counterparts using however a much smaller dimension – typically, n_2 ∼√(n)_1, where n_2 and n_1 denote the dimensions of the quadratic and traditional PROMs, respectively. The computational advantages of the proposed high-order approach to nonlinear PMOR over the traditional approach are highlighted for the detached-eddy simulation-based prediction of the Ahmed body turbulent wake flow, which is a popular CFD benchmark problem in the automotive industry. For a fixed accuracy level, these advantages include: a reduction of the total offline computational cost by a factor greater than five; a reduction of its online wall clock time by a factor greater than 32; and a reduction of the wall clock time of the underlying high-dimensional model by a factor greater than two orders of magnitude.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset