Quantum Circuit Compiler for a Shuttling-Based Trapped-Ion Quantum Computer

07/05/2022
by   Fabian Kreppel, et al.
0

Increasing capabilities of quantum computing hardware and the challenge to realize deep quantum circuits call for fully automated and efficient tools to compile quantum circuits. To express arbitrary circuits in a sequence of native gates pertaining to the specific quantum computer architecture is necessary to make algorithms portable across the landscape of quantum hardware providers. In this work, we present a compiler capable of transforming and optimizing a quantum circuit, targeting a shuttling-based trapped-ion quantum processor. It consists of custom algorithms set on top of the Cambridge Quantum Computer's quantum circuit framework Pytket. The performance is evaluated for a wide range of quantum circuits, showing that the gate counts can be reduced by a factor of up to 3.6 compared to standard Pytket and up to 2.2 compared to standard Qiskit compilation, while we achieve similar gate counts as compared to a Pytket extension targeting the AQT linear-static trapped ion addressing-based architecture.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset