Quantum Speedup Based on Classical Decision Trees

by   Salman Beigi, et al.

Lin and Lin have recently shown how starting with a classical query algorithm (decision tree) for a function, we may find upper bounds on its quantum query complexity. More precisely, they have shown that given a decision tree for a function f:{0,1}^n→[m] whose input can be accessed via queries to its bits, and a guessing algorithm that predicts answers to the queries, there is a quantum query algorithm for f which makes at most O(√(GT)) quantum queries where T is the depth of the decision tree and G is the maximum number of mistakes of the guessing algorithm. In this paper we give a simple proof of and generalize this result for functions f:[ℓ]^n → [m] with non-binary input as well as output alphabets. Our main tool for this generalization is non-binary span program which has recently been developed for non-binary functions, as well as the dual adversary bound. As applications of our main result we present several quantum query upper bounds, some of which are new. In particular, we show that topological sorting of vertices of a directed graph G can be done with O(n^3/2) quantum queries in the adjacency matrix model. Also, we show that the quantum query complexity of the maximum bipartite matching is upper bounded by O(n^3/4√(m) + n) in the adjacency list model.


page 1

page 2

page 3

page 4


Time and Query Optimal Quantum Algorithms Based on Decision Trees

It has recently been shown that starting with a classical query algorith...

Improved Quantum Query Upper Bounds Based on Classical Decision Trees

Given a classical query algorithm as a decision tree, when does there ex...

A Query-Efficient Quantum Algorithm for Maximum Matching on General Graphs

We design quantum algorithms for maximum matching. Working in the query ...

Span Program for Non-binary Functions

Span programs characterize the quantum query complexity of binary functi...

Exact quantum query complexity of weight decision problems

The weight decision problem, which requires to determine the Hamming wei...

Exact Quantum Query Algorithms Outperforming Parity – Beyond The Symmetric functions

The Exact Quantum Query model is the least explored query model, and alm...

Quantum Algorithm for the Multicollision Problem

The current paper presents a new quantum algorithm for finding multicoll...

Please sign up or login with your details

Forgot password? Click here to reset