Quasi-Mandelbrot sets for perturbed complex analytic maps: visual patterns

07/10/2008
by   A. V. Toporensky, et al.
0

We consider perturbations of the complex quadratic map z → z^2 +c and corresponding changes in their quasi-Mandelbrot sets. Depending on particular perturbation, visual forms of quasi-Mandelbrot set changes either sharply (when the perturbation reaches some critical value) or continuously. In the latter case we have a smooth transition from the classical form of the set to some forms, constructed from mostly linear structures, as it is typical for two-dimensional real number dynamics. Two examples of continuous evolution of the quasi-Mandelbrot set are described.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro