DeepAI AI Chat
Log In Sign Up

Randomized Dynamic Mode Decomposition

by   N. Benjamin Erichson, et al.
berkeley college
University of Washington

This paper presents a randomized algorithm for computing the near-optimal low-rank dynamic mode decomposition (DMD). Randomized algorithms are emerging techniques to compute low-rank matrix approximations. They are able to ease the computational challenges arising in the area of big data. The idea is to derive from the high-dimensional input matrix a smaller matrix, which is then used to efficiently compute the dynamic modes and eigenvalues. The algorithm is presented in a modular probabilistic framework, and the approximation quality can be controlled via oversampling, and power iterations.


Randomized Matrix Decompositions using R

Matrix decompositions are fundamental tools in the area of applied mathe...

State-Of-The-Art Algorithms For Low-Rank Dynamic Mode Decomposition

This technical note reviews sate-of-the-art algorithms for linear approx...

Deterministic matrix sketches for low-rank compression of high-dimensional simulation data

Matrices arising in scientific applications frequently admit linear low-...

Compressed Dynamic Mode Decomposition for Background Modeling

We introduce the method of compressed dynamic mode decomposition (cDMD) ...

Gaussian Process Koopman Mode Decomposition

In this paper, we propose a nonlinear probabilistic generative model of ...

Randomized Low-Rank Dynamic Mode Decomposition for Motion Detection

This paper introduces a fast algorithm for randomized computation of a l...

Unmixing Incoherent Structures of Big Data by Randomized or Greedy Decomposition

Learning big data by matrix decomposition always suffers from expensive ...