ReCA: an Efficient Reconfigurable Cache Architecture for Storage Systems with Online Workload Characterization

by   Reza Salkhordeh, et al.

In recent years, SSDs have gained tremendous attention in computing and storage systems due to significant performance improvement over HDDs. The cost per capacity of SSDs, however, prevents them from entirely replacing HDDs in such systems. One approach to effectively take advantage of SSDs is to use them as a caching layer to store performance critical data blocks to reduce the number of accesses to disk subsystem. Due to characteristics of Flash-based SSDs such as limited write endurance and long latency on write operations, employing caching algorithms at the Operating System (OS) level necessitates to take such characteristics into consideration. Previous caching techniques are optimized towards only one type of application, which affects both generality and applicability. In addition, they are not adaptive when the workload pattern changes over time. This paper presents an efficient Reconfigurable Cache Architecture (ReCA) for storage systems using a comprehensive workload characterization to find an optimal cache configuration for I/O intensive applications. For this purpose, we first investigate various types of I/O workloads and classify them into five major classes. Based on this characterization, an optimal cache configuration is presented for each class of workloads. Then, using the main features of each class, we continuously monitor the characteristics of an application during system runtime and the cache organization is reconfigured if the application changes from one class to another class of workloads. The cache reconfiguration is done online and workload classes can be extended to emerging I/O workloads in order to maintain its efficiency with the characteristics of I/O requests. Experimental results obtained by implementing ReCA in a server running Linux show that the proposed architecture improves performance and lifetime up to 24% and 33%, respectively.


page 5

page 7

page 11

page 12

page 14


RC-RNN: Reconfigurable Cache Architecture for Storage Systems Using Recurrent Neural Networks

Solid-State Drives (SSDs) have significant performance advantages over t...

Consideration for effectively handling parallel workloads on public cloud system

We retrieved and analyzed parallel storage workloads of the FUJITSU K5 c...

Evaluating Reliability of SSD-Based I/O Caches in Enterprise Storage Systems

In this paper, we present a comprehensive analysis investigating the rel...

An Efficient Hybrid I/O Caching Architecture Using Heterogeneous SSDs

SSDs are emerging storage devices which unlike HDDs, do not have mechani...

AIWC: OpenCL based Architecture Independent Workload Characterisation

OpenCL is an attractive programming model for high-performance computing...

An O(1) algorithm for implementing the LFU cache eviction scheme

Cache eviction algorithms are used widely in operating systems, database...

CAWL: A Cache-aware Write Performance Model of Linux Systems

The performance of data intensive applications is often dominated by the...

Please sign up or login with your details

Forgot password? Click here to reset