Recent Advances in Automated Question Answering In Biomedical Domain
The objective of automated Question Answering (QA) systems is to provide answers to user queries in a time efficient manner. The answers are usually found in either databases (or knowledge bases) or a collection of documents commonly referred to as the corpus. In the past few decades there has been a proliferation of acquisition of knowledge and consequently there has been an exponential growth in new scientific articles in the field of biomedicine. Therefore, it has become difficult to keep track of all the information in the domain, even for domain experts. With the improvements in commercial search engines, users can type in their queries and get a small set of documents most relevant for answering their query, as well as relevant snippets from the documents in some cases. However, it may be still tedious and time consuming to manually look for the required information or answers. This has necessitated the development of efficient QA systems which aim to find exact and precise answers to user provided natural language questions in the domain of biomedicine. In this paper, we introduce the basic methodologies used for developing general domain QA systems, followed by a thorough investigation of different aspects of biomedical QA systems, including benchmark datasets and several proposed approaches, both using structured databases and collection of texts. We also explore the limitations of current systems and explore potential avenues for further advancement.
READ FULL TEXT