Reducing the Computational Complexity of Pseudoinverse for the Incremental Broad Learning System on Added Inputs
In this brief, we improve the Broad Learning System (BLS) [7] by reducing the computational complexity of the incremental learning for added inputs. We utilize the inverse of a sum of matrices in [8] to improve a step in the pseudoinverse of a row-partitioned matrix. Accordingly we propose two fast algorithms for the cases of q > k and q < k, respectively, where q and k denote the number of additional training samples and the total number of nodes, respectively. Specifically, when q > k, the proposed algorithm computes only a k * k matrix inverse, instead of a q * q matrix inverse in the existing algorithm. Accordingly it can reduce the complexity dramatically. Our simulations, which follow those for Table V in [7], show that the proposed algorithm and the existing algorithm achieve the same testing accuracy, while the speedups in BLS training time of the proposed algorithm over the existing algorithm are 1.24 - 1.30.
READ FULL TEXT