Residual Policy Learning for Vehicle Control of Autonomous Racing Cars
The development of vehicle controllers for autonomous racing is challenging because racing cars operate at their physical driving limit. Prompted by the demand for improved performance, autonomous racing research has seen the proliferation of machine learning-based controllers. While these approaches show competitive performance, their practical applicability is often limited. Residual policy learning promises to mitigate this by combining classical controllers with learned residual controllers. The critical advantage of residual controllers is their high adaptability parallel to the classical controller's stable behavior. We propose a residual vehicle controller for autonomous racing cars that learns to amend a classical controller for the path-following of racing lines. In an extensive study, performance gains of our approach are evaluated for a simulated car of the F1TENTH autonomous racing series. The evaluation for twelve replicated real-world racetracks shows that the residual controller reduces lap times by an average of 4.55 classical controller and zero-shot generalizes to new racetracks.
READ FULL TEXT