Revisiting Synthesis for One-Counter Automata

05/03/2020
by   Guillermo A. Perez, et al.
0

One-counter automata are obtained by extending classical finite-state automata with a counter whose value can range over non-negative integers and be tested for zero. The updates and tests applicable to the counter can further be made parametric by introducing a set of integer-valued variables. We revisit the parameter synthesis problem for such automata. That is, we ask whether there exists a valuation of the parameters such that all infinite runs of the automaton satisfy some omega-regular property. The problem has been shown to be encodable in a restricted one-alternation fragment of Presburger arithmetic with divisibility. In this work (i) we argue that said fragment of the logic is unfortunately undecidable. Nevertheless, by reduction to a class of partial observation games, (ii) we prove the synthesis problem is decidable. Finally, (iii) we give a polynomial-space algorithm for the problem if parameters can only be used in tests, and not updates, of the counter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset