Robust Multi-Modal Policies for Industrial Assembly via Reinforcement Learning and Demonstrations: A Large-Scale Study

by   Jianlan Luo, et al.

Over the past several years there has been a considerable research investment into learning-based approaches to industrial assembly, but despite significant progress these techniques have yet to be adopted by industry. We argue that it is the prohibitively large design space for Deep Reinforcement Learning (DRL), rather than algorithmic limitations per se, that are truly responsible for this lack of adoption. Pushing these techniques into the industrial mainstream requires an industry-oriented paradigm which differs significantly from the academic mindset. In this paper we define criteria for industry-oriented DRL, and perform a thorough comparison according to these criteria of one family of learning approaches, DRL from demonstration, against a professional industrial integrator on the recently established NIST assembly benchmark. We explain the design choices, representing several years of investigation, which enabled our DRL system to consistently outperform the integrator baseline in terms of both speed and reliability. Finally, we conclude with a competition between our DRL system and a human on a challenge task of insertion into a randomly moving target. This study suggests that DRL is capable of outperforming not only established engineered approaches, but the human motor system as well, and that there remains significant room for improvement. Videos can be found on our project website:


page 1

page 2

page 4

page 6

page 7

page 8


Neural Episodic Control with State Abstraction

Existing Deep Reinforcement Learning (DRL) algorithms suffer from sample...

schlably: A Python Framework for Deep Reinforcement Learning Based Scheduling Experiments

Research on deep reinforcement learning (DRL) based production schedulin...

Deep Reinforcement Learning for Electric Transmission Voltage Control

Today, human operators primarily perform voltage control of the electric...

Deep reinforcement learning applied to an assembly sequence planning problem with user preferences

Deep reinforcement learning (DRL) has demonstrated its potential in solv...

Demonstration-guided Deep Reinforcement Learning for Coordinated Ramp Metering and Perimeter Control in Large Scale Networks

Effective traffic control methods have great potential in alleviating ne...

Flexible Gear Assembly With Visual Servoing and Force Feedback

Gear assembly is an essential but challenging task in industrial automat...

Learning What to Defer for Maximum Independent Sets

Designing efficient algorithms for combinatorial optimization appears ub...

Please sign up or login with your details

Forgot password? Click here to reset