Robust Representation Learning with Self-Distillation for Domain Generalization

02/14/2023
by   Ankur Singh, et al.
0

Domain generalization is a challenging problem in machine learning, where the goal is to train a model that can generalize well to unseen target domains without prior knowledge of these domains. Despite the recent success of deep neural networks, there remains a lack of effective methods for domain generalization using vision transformers. In this paper, we propose a novel domain generalization technique called Robust Representation Learning with Self-Distillation (RRLD) that utilizes a combination of i) intermediate-block self-distillation and ii) augmentation-guided self-distillation to improve the generalization capabilities of transformer-based models on unseen domains. This approach enables the network to learn robust and general features that are invariant to different augmentations and domain shifts while effectively mitigating overfitting to source domains. To evaluate the effectiveness of our proposed method, we perform extensive experiments on PACS [1] and OfficeHome [2] benchmark datasets, as well as a real-world wafer semiconductor defect dataset [3]. Our results demonstrate that RRLD achieves robust and accurate generalization performance. We observe an improvement in the range of 0.3 2.3

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset